Ma Clinique : L'information médicale par des professionnels de la santé
  • À la une
  • Actualités
  • Médecines douces
  • Chirurgie esthétique
  • Enfants
  • COVID-19NEW
Pas de résultat
View All Result
Ma Clinique : L'information médicale par des professionnels de la santé
Pas de résultat
View All Result

Accueil » Actualités médicales » Une technologie révolutionnaire identifie les voisins les plus proches des protéines à la surface des cellules

Une technologie révolutionnaire identifie les voisins les plus proches des protéines à la surface des cellules

par Ma Clinique
6 mars 2020
dans Actualités médicales
Temps de lecture : 6 min

picture20142f72f174318220-620x480-5905199

Lorsque des entreprises partenaires de la Princeton Catalysis Initiative se sont rencontrées il y a deux ans avec David MacMillan, elles lui ont présenté un défi biologique au cœur de médicaments anticancéreux potentiels et d'autres thérapies: quelles protéines à la surface d'une cellule se touchent?

Ce qu'ils voulaient était analogue à un projecteur éclairant une grotte sombre – quelque chose pour briller une lumière métaphorique sur une protéine et ses voisins les plus proches sur la membrane cellulaire. Grandes molécules complexes, les protéines sont la substance de la vie, le pivot même sur lequel tout tourne autour de nous – la façon dont nous pensons, la façon dont nous grandissons, les maladies que nous contractons. Les protéines peuvent le déterminer en envoyant des messages à leurs voisins. Mais alors que les scientifiques pouvaient auparavant dire qui était à l'intérieur de la grotte, ils ne pouvaient pas dire qui se tenait à côté de qui, et manquaient donc de connaissances importantes sur ces communications essentielles de protéine à protéine.

Le groupe MacMillan du département de chimie a annoncé dans le numéro actuel de Science qu'ils ont développé ce projecteur.

La technologie révolutionnaire, nommée μMap par l'équipe de chercheurs de Princeton et de scientifiques Merck, utilise un photocatalyseur – une molécule qui, lorsqu'elle est activée par la lumière, stimule une réaction chimique – pour identifier les relations spatiales sur les surfaces cellulaires. Le catalyseur génère un marqueur qui marque les protéines et leurs voisins moléculaires, ce qui permet à son tour la cartographie précise de leur micro-environnement.

La technologie pourrait avoir un impact sur la protéomique, la génomique et les neurosciences, pour ne nommer que quelques-uns des domaines les plus évidents. Mais les applications de la biologie fondamentale sont si variées que MacMillan, professeur distingué de chimie à l'Université James S. McDonnell de Princeton, a faim de mettre la technologie « entre les mains de tous » pour voir ce que les scientifiques dans d'autres domaines peuvent trouver.

Pour les technologies que nous avons actuellement, le problème n'est pas de savoir si vous pouvez étiqueter des choses. Le problème est que vous pouvez étiqueter des milliers de choses et donc vous ne pouvez pas dire ce qui se passe là-bas et ce qui est juste à côté. Cela s'avère vraiment, vraiment important parce que les molécules ou protéines ou enzymes qui se signalent sont généralement juste à côté les unes des autres. Eh bien, l'état de l'art ne vous dit pas ce qui est proche. « 

David MacMillan, professeur émérite de chimie à l'Université James S. McDonnell de Princeton

Ils ont donc proposé une nouvelle approche radicale.

« Nous avons fait quelques expériences critiques et nous avons immédiatement pu montrer que nous étiquetions les choses à très courte distance », a déclaré MacMillan. « Nous savons maintenant exactement ce qui se trouve dans le quartier. Et cela n'a jamais été fait auparavant. Pour la biologie, ce sera comme si vous allumiez l'interrupteur d'éclairage et que vous voyiez soudainement tout. »

Les scientifiques du Merck Exploratory Science Center (MESC) Rob Oslund et Olugbeminiyi Fadeyi, co-auteurs de papiers basés à Cambridge, Massachusetts, ont déclaré que la technologie pourrait inspirer de nouveaux développements en biologie. « Étant donné le rôle important de la compréhension des interactions protéiques au sein des micro-environnements cellulaires », a déclaré Oslund, « cette technologie a le potentiel de devenir un outil révolutionnaire pour les laboratoires universitaires et industriels des sciences de la vie du monde entier. »

Le μMap, micro-carte prononcée, identifie les voisins dans un rayon de 1 à 10 nanomètres autour d'une protéine particulière. (Pour référence, un cheveu humain mesure environ 100 000 nanomètres de diamètre.) La résolution à ce niveau identifie les 10 ou 15 molécules les plus proches.

Jacob Geri, chercheur postdoctoral au Merck Center for Catalysis de l'Université de Princeton et co-premier auteur du Science papier avec l'étudiant diplômé James Oakley et le scientifique MESC Tamara Reyes-Robles, a déclaré μMap fait cela en utilisant la lumière bleue pour alimenter une réaction catalytique.

Voici comment cela fonctionne: le catalyseur – dans ce cas, un composé métallique organique – est sélectivement attaché à l'une des quelque 40 000 protéines à la surface d'une cellule, où il agit comme une sorte d'antenne. La lumière bleue, qui a une énergie photonique très élevée, sert de déclencheur. Lorsqu'elle brille sur la cellule, cette lumière bleue est captée par l'antenne, qui convertit son énergie photonique en énergie chimique. Cette énergie latente ne refroidit pas; il ne diffuse pas; il ne se promène pas sans but le long de la membrane cellulaire en peignant tout ce qu'il rencontre. Il se trouve juste.

Sur la base d'un article publié il y a une quarantaine d'années, le groupe MacMillan a eu l'idée d'employer l'utilisation d'une molécule organique appelée diazirine particulièrement réceptive à cette énergie latente. Lorsqu'une diazirine se déplace très près du catalyseur – à 0,1 nanomètre près – l'énergie chimique est transférée à la diazirine. La diazirine réagit à son tour si violemment qu'elle libère un sous-produit et devient ce qu'on appelle un carbène, une espèce «en colère» qui s'attache aux protéines voisines.

« Le catalyseur transfère tellement d'énergie que la molécule se déchire pour exposer un atome de carbone incroyablement instable, qui se collera alors à tout ce qu'il peut », a expliqué Geri.

Le catalyseur peut effectuer cette réaction chimique plusieurs fois, de sorte que le processus se répète pour toutes les molécules, protéines et enzymes localisées. Parce que les carbènes sont si éphémères – seulement quelques nanosecondes – leur réaction fournit un instantané vivant et en temps réel de toutes les molécules contiguës. Par la suite, les chercheurs peuvent piquer ensemble une carte précise du micro-environnement – les mêmes technologies que recherchaient les scientifiques.

« Une grande partie du mécanisme de la maladie passe par la façon dont ces cellules se parlent, et elles ne peuvent parler que si elles se touchent », a déclaré Geri. « C'est pourquoi la surface de la cellule est si importante. S'ils se touchent, ils peuvent communiquer. »

Il a ajouté: « Nous pouvons maintenant comprendre ce qui fait que cette communication se produit ou ce qui fait que cette communication change. Cela a vraiment été une expérience incroyable, de travailler là-dessus. »

Le groupe de MacMillan a choisi deux catégories de cellules humaines pour enquêter. L'une était une classe de protéines qui avaient des interactions connues, sélectionnées comme une sorte de groupe témoin pour prouver que leurs interactions pouvaient être capturées par μMap. Le deuxième groupe était « plus intéressant », a déclaré Geri. Il était centré sur des protéines appelées PD-L1 et PD-1, qui sont associées au système immunitaire du corps et à sa réponse aux cellules cancéreuses.

Normalement, les cellules malades comme les cellules cancéreuses se présenteraient comme des intrus moléculaires qui doivent être éliminés par le système immunitaire. Mais les cellules cancéreuses sont trompeuses, a déclaré MacMillan. Ils envoient un signal « ne me tue pas » à travers un mécanisme de camouflage impliquant les axes PD-L1 et PD-1. Étant donné que les thérapies contre le cancer réussissent en partie en raison de leur capacité à bloquer ce signal, les scientifiques veulent en savoir plus sur la façon dont il est transmis. La cartographie du quartier précis est une première étape essentielle. Lorsque les chercheurs mettent le catalyseur μMap sur PD-L1 et PD-1, les molécules de leur micro-environnement sont marquées. Les interactions protéine-protéine qui avaient été précédemment supposées pouvaient maintenant être directement observées. Et plusieurs corrélations ont été détectées qui n'avaient jamais été conçues.

« Maintenant, nous ne faisons pas la biologie du cancer », a déclaré MacMillan. « Mais nous avons inventé cet outil qui peut vous donner beaucoup d'informations sur ces cellules cancéreuses. Nous pensons qu'en utilisant ces informations, vous pouvez commencer à cibler ces protéines afin de supprimer également les signaux parasites. Et si vous pouvez supprimer ces signaux, vous améliorez votre système immunitaire en recherchant ces cellules cancéreuses. « 

Peu de temps après l'arrivée de MacMillan à Princeton, il a commencé à conduire des recherches sur l'exploitation de la lumière LED bleue pour effectuer des exploits chimiques auparavant impossibles. Merck s'est impliqué en 2006, avec un don de semences pour la recherche de MacMillan. La société a depuis donné des fonds supplémentaires et, en 2019, elle a annoncé un engagement de financement de 10 ans en faveur de la Princeton Catalysis Initiative, qui favorise les collaborations interdisciplinaires pour accélérer la découverte de nouveaux domaines de recherche.

« Notre collaboration a créé une nouvelle approche de chimie cellulaire tirant parti de la catalyse photorédox pour activer les diazirines, une classe importante de molécules organiques, d'une manière contrôlée dans le temps », a déclaré Fadeyi de Merck. « En raison de l'utilisation courante des diazirines en biologie chimique et en biologie, cette méthode sera très demandée non seulement pour le marquage des protéines, mais aussi pour identifier les cibles de liaison d'autres biomolécules pour élucider leurs rôles fonctionnels. »

Il a ajouté: « La collaboration a été réussie en raison des interactions étroites entre les scientifiques de Merck et le laboratoire de Dave. »

MacMillan a également salué la découverte comme preuve de la valeur de la collaboration entre les secteurs académiques et industriels, comme ceux envisagés lorsque l'Initiative de catalyse de Princeton a vu le jour en 2018.

« En tant que chimistes, nous ne connaissons pas de bonnes questions en biologie – zéro », a-t-il déclaré. « Donc, vous prenez ces gens qui savent tout sur la biologie, et ils ont ce problème qu'ils essaient de résoudre. Et c'est finalement un grand problème pour un groupe de chimie. En même temps, ce n'est pas un problème qu'un un groupe de chimie y penserait jamais parce qu'il ne connaît pas la biologie. Vous avez ces deux domaines différents et vous les assemblez et vous commencez à réaliser toutes ces grandes choses que vous pouvez faire.

« C'est ce que j'aime dans les sciences sociales des sciences », a-t-il ajouté. « C'est absolument un bel exemple de la façon dont il a fallu un village pour résoudre un problème. »

La source:

Référence de la revue:

Geri, J.B., et al. (2020) Cartographie du microenvironnement via le transfert d'énergie Dexter sur les cellules immunitaires. Science. doi.org/10.1126/science.aay4106.

★★★★★

Précédent

Un nouveau modèle de données permet d'identifier les zones où les cas de maladie de Lyme peuvent ne pas être déclarés

Suivant

Manifestations gastro-intestinales et transmission fécale-orale d'un nouveau coronavirus

Ma Clinique

Ma Clinique

L'équipe Ma Clinique : professionnels de la santé et spécialistes en médecine générale. Notre objectif est de vous fournir les informations dont vous avez besoin pour prendre des décisions éclairées sur vos soins de santé.

En rapport avec cet article

Les personnes atteintes de troubles psychotiques à risque plus élevé d'hospitalisation, de décès par maladies infectieuses
Actualités médicales

Les cellules T tueuses chez les personnes âgées se révèlent moins efficaces pour lutter contre les virus de la grippe

30 septembre 2023
La recherche de l'OSU met en lumière la façon dont les cellules cancéreuses malignes changent de forme
Actualités médicales

Les cellules cancéreuses détournent l’ADN activateur pour se développer plus rapidement, selon une étude

30 septembre 2023
Comment un nouveau traitement impliquant des cellules B peut aider à lutter contre les maladies auto-immunes
Actualités médicales

Comment un nouveau traitement impliquant des cellules B peut aider à lutter contre les maladies auto-immunes

30 septembre 2023
La photothérapie pour la maladie d'Alzheimer pourrait aider à éliminer les protéines toxiques du cerveau endormi
Actualités médicales

La photothérapie pour la maladie d’Alzheimer pourrait aider à éliminer les protéines toxiques du cerveau endormi

29 septembre 2023
Study: Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. Image Credit: MMD Creative/Shutterstock.com
Actualités médicales

une étude identifie une interaction entre le récepteur des œstrogènes et une variante génétique chez les femmes

28 septembre 2023
Les cellules MAIT exercent des fonctions complexes et pourraient être la cible d'immunothérapies et de vaccins futurs
Actualités médicales

Des chercheurs développent une nouvelle façon de renforcer la capacité des cellules immunitaires à combattre la tuberculose

28 septembre 2023

Articles populaires

Le guide complet pour comprendre et choisir les draps d'examen

Le guide complet pour comprendre et choisir les draps d’examen

25 septembre 2023
L'accompagnement par un patient aidant pour mieux vivre avec le cancer

L’accompagnement par un patient aidant pour mieux vivre avec le cancer

22 septembre 2023
Santé visuelle : À la découverte de Générale d’Optique

Santé visuelle : À la découverte de Générale d’Optique

20 septembre 2023
4 éléments à connaître sur le millepertuis

4 éléments à connaître sur le millepertuis

19 septembre 2023
Devenir un professionnel de la rééducation : formation kinésithérapie

Devenir un professionnel de la rééducation : formation kinésithérapie

13 septembre 2023

Articles recommandés

Automassage du visage

Automassage du visage : le lifting naturel à la maison

5 mars 2021
Les problématiques du mal de montagne pour les coureurs à pied

Les problématiques du mal de montagne pour les coureurs à pied

9 novembre 2022
Hypertonie spastique chez l'enfant

Hypertonie spastique chez l’enfant

2 avril 2022
Prise de masse : gérez avec précaution la prise de complément alimentaire

Prise de masse : gérez avec précaution la prise de complément alimentaire

3 décembre 2022
Le recrutement des métiers de la santé

Le recrutement dans les métiers de la santé

30 mai 2023
Prendre soin de sa peau : astuces et techniques efficaces

Prendre soin de sa peau : astuces et techniques efficaces

27 juillet 2023
Risques du peeling : les dommages de la dermabrasion par laser

Risques du peeling : les dommages de la dermabrasion par laser

24 février 2020
Développement personnel : pourquoi faire appel à un coach de vie ?

Développement personnel : pourquoi faire appel à un coach de vie ?

4 janvier 2023
Santé publique : top 6 du matériel indispensable

Santé publique : top 6 du matériel indispensable

18 novembre 2021

Personnes malvoyantes : des solutions innovantes pour votre quotidien

23 septembre 2022
Éviter la dépression après un deuil

Éviter la dépression après un deuil

30 mai 2022
Soin du corps : zoom sur le gommage

Soin du corps : zoom sur le gommage

23 septembre 2022

Qui sommes-nous ?

Ma Clinique

Ma Clinique : L'information médicale par des professionnels de la santé.

Ma Clinique est géré par des professionnels de la santé qui ont à cœur de fournir des informations médicales précises et actualisées. Nous sommes une équipe de médecins et d'autres professionnels de la santé, et avons des années d'expérience dans le domaine de la médecine.

Nous trouver

Ma Clinique
11 rue Jules Ferry
01500 Ambérieu-en-Bugey
France

Articles récents

La chirurgie bariatrique pourrait réduire le risque de cancer du sang chez les femmes obèses

La chirurgie bariatrique pourrait réduire le risque de cancer du sang chez les femmes obèses

30 septembre 2023
L'entraînement aérobique et musculaire pourrait aider à garder le cerveau jeune

L’entraînement aérobique et musculaire pourrait aider à garder le cerveau jeune

30 septembre 2023
L'Université de Birmingham lance 5 nouvelles études majeures axées sur la gestion du diabète de type 1

Une étude montre que la consanguinité peut augmenter le risque de diabète de type 2 et d’autres maladies courantes

30 septembre 2023
Les personnes atteintes de troubles psychotiques à risque plus élevé d'hospitalisation, de décès par maladies infectieuses

Les cellules T tueuses chez les personnes âgées se révèlent moins efficaces pour lutter contre les virus de la grippe

30 septembre 2023

Notre équipe

  • Florence Bretille
  • Jules Gilbault
  • Ma Clinique
  • Stéphane Cohen
  • Mentions légales
  • Contactez-nous

© 2023 Copyright - L'information médicale par des professionnels de la santé.

Pas de résultat
View All Result
  • À la une
  • Actualités
  • Médecines douces
  • Chirurgie esthétique
  • Enfants
  • COVID-19

© 2023 Copyright - L'information médicale par des professionnels de la santé.

Ce site utilise les cookies. En continuant votre navigation sur ce site, vous acceptez l'utilisation des cookies afin d'assurer le bon déroulement de votre visite et de réaliser des statistiques d'audience. Visitez nos mentions légales .